5.4 Discrete random variables

Candidates should be able to:

- draw up a probability distribution table relating to a given situation involving a discrete random variable X, and calculate E(X) and Var(X)
- use formulae for probabilities for the binomial and geometric distributions, and recognise practical situations where these distributions are suitable models
- use formulae for the expectation and variance of the binomial distribution and for the expectation of the geometric distribution.

Notes and examples

Including the notations $\mathrm{B}(n,p)$ and $\mathrm{Geo}(p)$. $\mathrm{Geo}(p)$ denotes the distribution in which $p_r = p(1-p)^{r-1}$ for $r=1,2,3,\ldots$

Proofs of formulae are not required.

GEOMETRIC DISTRIBUTION

BINOMIAL,

Coin

M = 20

p=Head=

no. A tries success occur.

 $P(X=8) = \frac{20}{6}(0.5)^{8}(0.5)^{12}$

Binomial looks at a repeated experiment where n=total repeats and r=no. If time success occur.

Geometric

- 1) Repeated
- 2) Success/failure
- 3) Discrete outcomes.

Repeat on experiment till success happens for the first time.

There is no n=no. of repeats involved.

Roll a dice till it lands on 6.

Success =
$$P(6) = 1$$
 $P=1$
 $y=\frac{5}{6}$

(i) Find probability that 6 lands on 8th time we rolled the dice.

$$P(X=8) = \begin{pmatrix} 5 \\ 6 \end{pmatrix} \begin{pmatrix} 5 \\$$

$$P(X=8) = q^{8-1} p^{1}$$

GEOMETRIC DISTRIBUTION

Repeat experiment until success occurs.

$$P(X = h) = 0^{h-1}$$

no of repeat where we want success to happen

$$P(X=6) = q^{5}p$$

 $P(X=4) = q^{3}p$

IMPORTANT.

LETS CRAM

GEOMETRIC Repeat experiment until first success.

1
$$P(x = r) = q^{n-1} \cdot p = (1-p)^{n-1} \cdot p$$

no of repeat on which we want first success.

$$P(X \le h) = 1 - q^h$$
Be really careful about \le and 7

$$P(X7h) = q^h$$
Sign here.

$$\underline{Q}$$
 Roll a dice till it lands on 6.
$$P = \frac{1}{6}, \quad 9 = \frac{5}{6}$$

(i) Find probability that dice lands on 6 on fourth turn.

$$P(x=4) = q^{h-1}p = q^{4-1}p$$

$$= \left(\frac{5}{6}\right)^3 \left(\frac{1}{6}\right)^3$$

$$\ddot{y} \quad P(X \leq 6) = 1 - \gamma^{r}$$

$$= 1 - \left(\frac{5}{6}\right)^6$$

$$P(X < 6) = P(X \le 5) = 1 - 9^{2} = 1 - (\frac{5}{6})^{5}$$
(514,3,211)

('v)
$$P(X < 4) = P(X \le 3) = 1 - 9^{r} = 1 - (5)^{3}$$
(3,2,1)

(v)
$$P(x77) = 9^{2} = (\frac{5}{6})^{7}$$

(4)
$$P(x_7, y) = P(x_7, y) = y^3 = (5)^3 P(x \le r) = 1 - 9^r$$

 $P(x_7, y) = 9^r$

	SI d d 1-1'1' d d		
	Show that the probability that the sco	ore is 4 is $\frac{1}{12}$. (AG)	
	Total = 36 <u>Sum is 4.</u> (1,3)	0/2 - 1) -	
	Sum is 9.	P(Sum = 4) = 3	=
	(1,3)	36	12
	(3,1)		
	(2,2)		
	wo dice are thrown repeatedly until	a score of 4 is obtained. The num	mber of throws ta
	ted by the random variable X .	Geometric P=1	, 9 = 11-
b) I	Find the mean of X .	A ***	ast part
	Mean = 1 =	:	
	Ρ	12	
	Mean = 12		
	······································		
(c) I	Find the probability that a score of 4		
(c) I			05394
(c) I		is first obtained on the 6th throw. $p = \left(\frac{11}{12}\right)^{5} \left(\frac{1}{12}\right) = 0$	05394
(c) I			05394
(c) I			··o5394
(c) I			05394
	$P(X=6) = q^5$		05394
(d) I	$P(X=6) = q^5$ Find $P(X < 8)$.	$P = \left(\frac{11}{12}\right)^5 \left(\frac{1}{12}\right) = 0$	
	$P(X=6) = q^5$	$P = \left(\frac{11}{12}\right)^{5} \left(\frac{1}{12}\right) = 0$ $P(x \le r)$	

= 0.456

7	On any given day, the prol	ashility that Moena	meccages her frier	d Pacha ic 0.72
,	On any given day, the pro-	Jaointy mai Mocha	incosages her mer	iu i asiia 18 0.72.

(a) Find the probability that for a random sample of 12 days Moena messages Pasha on no more than 9 days. [3]

Binomial n=12, p=0.72, 9/=0.28

 $P(X \leq 9) = 1 - P(10, 11, 12)$

 $= 1 - \begin{bmatrix} 12 & (0.72)(0.28)^{2} + 12 & (0.72)(0.28)^{1} & 12 & (0.72)(0.28) \\ 10 & 11 & 12 & (0.72)(0.28) \end{bmatrix}$

= 1-(0.19372+0.09657+0.01941)

= 0.696 $P(x<9)\begin{bmatrix} 1\\ 2\\ 3\\ \vdots \end{bmatrix}$

12

(b) Moena messages Pasha on 1 January. Find the probability that the next day on which she

messages Pasha is 5 January.

2 Jan 3 Jan 4 Jan 5 Jan

 $F^{3}S$ $(0.28)^{3}(0.72) = 0.01581$

.....

den	oair of fair coins is thrown repeatedly until a pair of tails is obtained. The random variable otes the number of throws required to obtain a pair of tails. HH, HT, TH, TT
(a)	Find the expected value of X. $P = \frac{1}{4} \cdot 9 = \frac{3}{4}$ P(TT) = $\frac{1}{4}$
	Mean = Expected value = 1 = 1 = 4
(b)	Find the probability that exactly 3 throws are required to obtain a pair of tails. [$\frac{2}{3} = \frac{1}{3} =$
	$P(X=3) = q^2 p = (3)^2 (4) = 0.141$
(c)	Find the probability that <u>fewer than 6</u> throws are required to obtain a pair of tails.
	D(A(A(A)))
	$P(X < 6) \qquad P(X \le r) = 1 - qr$
	$P(X \le 5) = 1 - 97^{V} = 1 - \left(\frac{3}{4}\right)^{5}$
	$P(X \le 5) = 1 - 97^{V} = 1 - \left(\frac{3}{4}\right)^{5}$

	geometric	<u>:</u>	0 = 0.25)9	= 0.75	
		<u>~</u>				
P.((X 76)=	91 =	: 0.75 ⁶		P(x>r)=	91
		•	= 0.178			
•••••		••••••		•••••••••••		
				•••••		
Find	the probability that	, for a rando	om sample of 1	0 throws, Ka	yla achieves at least 3	succ
	Binomia	, ,	0 = 10	. 0 =	0.25, 9/	= 0.
		- :-)	<u> </u>	9
			0 /- 1			
P((X 7/3) =	=] -	ρ(ο, ι	,2)		X
P((X 7/3) =	=) —	ρ(ο, ι	, 2)		X
P((X 7/3) =	=) —	ρ(ο, ι	,2)		X P
P((x 7~3) =	=] —	ρ(ο, ι	, 2)		X 0 1 2
P((x 7/3) =	=] -	ρ(ο, ι	, 2)		X 0 1 2 3
P((X 7/3) =	=) -	ρ(ο, ι	,2)	P(× ≽ 3)	X 0 2 3 4 5
P((X 7/3) =	=) -	ρ(ο, ι	, 2)	P(×≯3) at least	X 0 - 2 3 4 5 6
P((× 73) =	=) -	ρ(ο, ι	, 2)	P(×≥3) at least	X 0 2 3 4 5 6 :: 0
P((X 7/3) =	=) -	ρ(ο, ι	, 2)	P(×≯3) at least	X 0 1 2 3 4 5 6 ; 9 10
P((X 7/3) =	=) -	ρ(ο, ι	, 2)	P(×≥3) at least	X 0 + 2 3 + 5 6 : 9 10
P((X 7/3) =	=) -	ρ(ο, ι	, 2)	P(×≥3) at least	X 0 1 2 3 4 5 6 ; 9 10

9709/51/O/N/20

Kayla is competing in a throwing event. A throw is counted as a success if the distance achieved is greater than 30 metres. The probability that Kayla will achieve a success on any throw is 0.25.

3

© UCLES 2020

A fa	air six-sided die, with faces marked 1, 2, 3, 4, 5, 6, is thrown repeatedly	
(a)	Find the probability that obtaining a 4 requires fewer than 6 throws.	geometric [2]
		$\rho = \frac{1}{6}$, $\gamma = \frac{5}{6}$
	tewer than 6	
	$P(X < 6)$ $P(X \le$	(r) = 1 - 9'
	$P(x \leq 5) = 1 - 9^{r}$	
	$= 1 - \left(\frac{5}{6}\right)^5 = 0.598$	<u> </u>
On	another occasion, the die is thrown 10 times.	
On :	Find the probability that a 4 is obtained at least 3 times.	[3]
	Find the probability that a 4 is obtained at least 3 times.	
	Find the probability that a 4 is obtained at least 3 times.	/ = 5 6
	Find the probability that a 4 is obtained at least 3 times. Binomial $n = 10$, $p = \frac{1}{6}$, 9	/ = 5 6
	Find the probability that a 4 is obtained at least 3 times. Binomial $n = 10$, $p = \frac{1}{6}$, 9	/ = 5 6
	Find the probability that a 4 is obtained at least 3 times. Binomial $n = 10$, $p = \frac{1}{6}$, $\frac{9}{6}$ $P(X = 3) = 1 - P(0, 1, 2)$	/ = 5 6
	Find the probability that a 4 is obtained at least 3 times. Binomial $n = 10$, $p = \frac{1}{6}$, $\frac{9}{6}$ $P(X = 3) = 1 - P(0, 1, 2)$	/ = 5 6
	Find the probability that a 4 is obtained at least 3 times. Binomial $n = 10$, $p = \frac{1}{6}$, $\frac{9}{6}$ $P(X = 3) = 1 - P(0, 1, 2)$	/ = 5 6
	Find the probability that a 4 is obtained at least 3 times. Binomial $n = 10$, $p = \frac{1}{6}$, $\frac{9}{6}$ $P(X = 3) = 1 - P(0, 1, 2)$	/ = 5 6

1

An	ordinary fair die is thrown until a 6 is obtained. Geometric. $P = \frac{1}{5}$, $9 = \frac{5}{5}$
(a)	Find the probability that obtaining a 6 takes more than 8 throws. [2]
	$P(X78) = q^r = \left(\frac{5}{6}\right)^8 \qquad P(X77) = q^r$
	= 0.233
Two	ordinary fair dice are thrown together until a pair of 6s is obtained. The number of throws taken enoted by the random variable X .
	Find the expected value of X . Geometric $\Rightarrow P = \frac{1}{36}$, $9 = \frac{35}{36}$.
	Mean = 1 = 1 = 36
	36
(c)	Find the probability that obtaining a pair of 6s takes either 10 or 11 throws. [2]
	P(X=10) + P(X=11)
	q_{p} + q_{p}
	(36/(36) (36/(56)